
Agilent HLMP-LD16/HLMP-MD16 4 mm Precision Optical Performance **Red Oval LEDs**

Data Sheet

Description

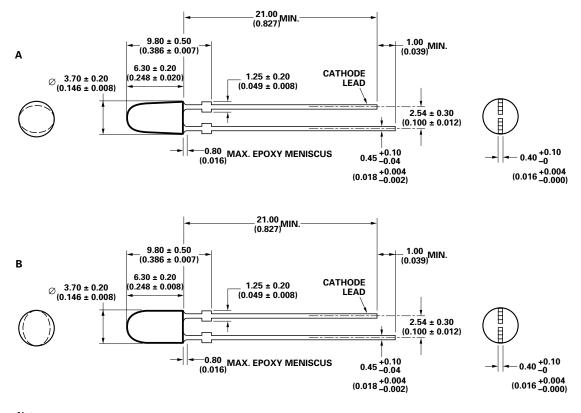
These Precision Optical Performance Oval LEDs are specifically designed for Full Color/Video and Passenger Information signs. The oval shaped radiation pattern ($50^{\circ} \ge 100^{\circ}$) and high luminous intensity ensure that these devices are excellent for wide field of view outdoor applications where a wide viewing angle and readability in sunlight are essential. These lamps have very smooth, matched radiation patterns ensuring consistent color mixing in full color applications, message uniformity across the viewing angle of the sign.

High efficiency LED materials are used in these lamps: Aluminum Indium Gallium Phosphide (AlInGaP) for Red color. The higher performance AlInGaP II is used. Each lamp is made with an advanced optical grade epoxy offering superior high temperature and high moisture resistance in outdoor applications. The package epoxy contains both UV-a and UV-b inhibitors to reduce the effects of long term exposure to direct sunlight.

Designers can select parallel (where the axis of the leads is parallel to the wide axis of the oval radiation pattern) or perpendicular orientation. Both of the lamps are red diffused-tinted.

Features

- High brightness material AlInGaP 630 mm Red
- Viewing angles: major axis 100° minor axis 50°
- Well defined spatial radiation pattern
- Superior resistance to moisture


Applications

- Commercial outdoor advertising
- Full color signs

Agilent Technologies Innovating the HP Way

Package Dimensions

Notes: 1. Dimensions in millimeters (inches). 2. Tolerance ± 0.1 mm unless otherwise noted.

Part Number	Color Dominant Wavelength λ_d (nm) Typ.	Lumino Intensit Iv (mcd Min.		Tinting Type	Leadframe Orientation	Package Drawing
HLMP-MD16-MQ000	Red 630	450	1730	Red	Perpendicular	А
HLMP-LD16-MQ000	Red 630	450	1730	Red	Parallel	В
HLMP-MD16-LP000	Red 630	345	1330	Red	Perpendicular	А
HLMP-LD16-LP000	Red 630	345	1330	Red	Parallel	В

Notes:

1. The luminous intensity is measured on the mechanical axis of the lamp package.

2. The optical axis is closely aligned with the package mechanical axis.

3. The dominant wavelength λ_d is derived from the CIE Chromaticity Diagram and represents the color of the lamp.

Absolute Maximum Ratings

 $T_A = 25^{\circ}C$

Parameter	AlInGaP Value	Units
DC Forward Current ^[1]	50	mA
Peak Forward Current	70	mA
Average Forward Current	30	mA
Power Dissipation	120	mW
Reverse Voltage (I _R = 100 µA)	5	V
LED Junction Temperature	130	°C
Operating Temperature Range	-40 to +100	°C
Storage Temperature Range	-40 to +120	°C
Soldering Temperature	260 for 5 sec	°C

Note:

1. Derate linearly as shown in Figure 3 for temperatures above 50°C.

Electrical/Optical Characteristics

 $T_A = 25^{\circ}C$

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Typical Viewing Angle	51111501		.16.	man	0	
Major	20.0		100		deg	
Minor	2 θ _{1/2}		50		uey	
			50			
Forward Voltage						
Red (λ_d = 630 nm)	V _F		2.0	2.4	V	I _F = 20 mA
Reverse Voltage						
Red	V _R	5	20		V	I _R = 100 μA
Peak Wavelength						Peak of Wavelength of Spectral
Red ($\lambda_d = 630$ nm)	λpeak		639		nm	Distribution at $I_F = 20 \text{ mA}$
Spectral Halfwidth						Wavelength Width at Spectral
Red (λ_d = 630 nm)	$\Delta\lambda_{1/2}$		17		nm	Distribution Power Point
$meu (m_d = 050 mm)$	$\Delta n_{1/2}$		17		11111	at $I_F = 20 \text{ mA}$
Capacitance	•				_	
Red	С		40		pF	$V_{F} = 0, F = 1 MHz$
Thermal Resistance	$R\theta_{J-PIN}$		240		°C/W	LED Junction-to-Cathode Lead
Luminous Efficacy						Emitted Luminous Power/
Red ($\lambda_{d} = 630 \text{ nm}$)	η _v		155		lm/W	Emitted Radiant Power
	••					

Notes:

1. $2\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the on-axis intensity.

2. The radiant intensity, I_e in watts per steradian, may be found from the equation $I_e = I_v/\eta_v$ where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

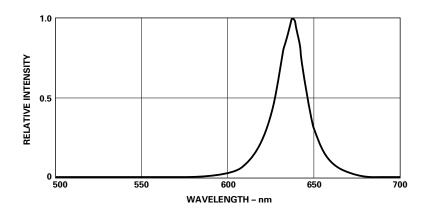
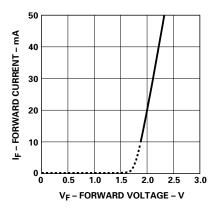
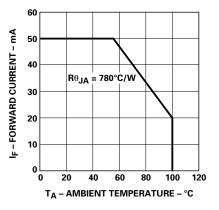




Figure 1. Relative Intensity vs. Wavelength.

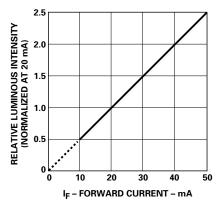


Figure 2. AllnGaP Forward Current vs. Forward Voltage.

Figure 3. AlInGaP Maximum Forward Current vs. Ambient Temperature.

Figure 4. AllnGaP Relative Luminous Intensity vs. Forward Current.

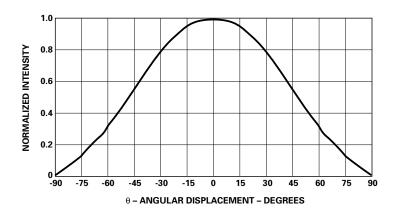


Figure 5a. Representative Spatial Radiation Pattern – Horizontal.

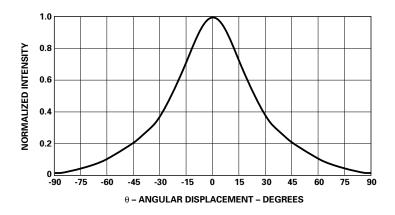


Figure 5b. Representative Spatial Radiation Pattern – Vertical.

Intensity Bin Limits (mcd at 20 mA)

Min.	Max.
400	520
520	680
680	880
880	1150
1150	1500
	400 520 680 880

Tolerance for each bin limit is $\pm 15\%$.

Note:

1. Bin categories are established for classification of products. Products may not be available in all bin categories.

Data subject to change. Copyright © 2000 Agilent Technologies Inc. Obsoletes 5980-0263E 5980-2021E (9/00)

Agilent Technologies